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Abstract

Protein–protein interactions form the basis for a vast majority of cellular events, including signal transduction and
transcriptional regulation. It is now understood that the study of interactions between cellular macromolecules is
fundamental to the understanding of biological systems. Interactions between proteins have been studied through
a number of high-throughput experiments and have also been predicted through an array of computational meth-
ods that leverage the vast amount of sequence data generated in the last decade. In this review, I discuss some of
the important computational methods for the prediction of functional linkages between proteins. I then give a
brief overview of some of the databases and tools that are useful for a study of protein–protein interactions. I also
present an introduction to network theory, followed by a discussion of the parameters commonly used in analys-
ing networks, important network topologies, as well as methods to identify important network components, based
on perturbations.

Introduction
Proteins are the main catalysts, structural elements, sig-
nalling messengers and molecular machines of biological
tissues [1]. Protein–protein interactions (PPIs) are extre-
mely important in orchestrating the events in a cell.
They form the basis for several signal transduction path-
ways in a cell, as well as various transcriptional regula-
tory networks. The availability of complete and
annotated genome sequences of several organisms has
led to a paradigm shift from the study of individual pro-
teins in an organism to large-scale proteome-wide stu-
dies of proteins, which interact in a beautifully
concerted network of metabolic, signalling and regula-
tory pathways in a cell. In general, the behaviour of a
system is quite different from merely the sum of the
interactions of its various parts. As Anderson put it as
early as 1972, in his classic paper by the same title,
“More is different“ [2] — it is not possible to reliably
predict the behaviour of a complex system, despite a
good knowledge of the fundamental laws governing the
individual components. Comparative genomics at a pri-
mary sequence level has also indicated that species dif-
ferences are due more to the difference in the
interactions between the component proteins, rather

than the individual genes themselves [3]. Consequently,
several efforts have been made to identify these interac-
tions, in an attempt to understand biological systems
better [4-12]. The need to understand protein structure
and function has been a critical driving force for biologi-
cal research in the recent decades. With the advent of
high-throughput experiments to identify PPIs, more
knowledge on protein function has been obtained,
together with the development of several methods to
predict and study the interactions between proteins.
A wide variety of methods have been used to identify

protein–protein associations; these associations may
range from direct physical interactions inferred from
experimental methods to functional linkages predicted
on the basis of computational analyses. In the past,
experimental methods based on microarrays and yeast
two-hybrid, as well as computational methods based on
protein sequences and structures have been developed
and widely used. Given the difficulties in experimentally
identifying PPIs, a wide range of computational methods
have been used to identify protein–protein functional
linkages and interactions. These methods range from
identifying a single pair of interacting proteins at one
end, to the identification and analysis of a large network
of thousands of proteins, the latter as large as that of an
entire proteome of a given cell.* Correspondence: k.raman@bioc.unizh.ch
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Computational methods for prediction of
protein–protein functional linkages and
interactions
Methods based on genomic context
Domain fusion
The domain fusion or Rosetta Stone method was pro-
posed by Eisenberg and co-workers [13]. The method is
based on the hypothesis that if domains A and B exist
fused in a single polypeptide AB in another organism,
then A and B are functionally linked. Fig. 1A shows an
example to illustrate this point. The premise is that
since the affinity between proteins A and B is greatly
enhanced when A is fused to B, some interacting pairs
of proteins may have evolved from proteins that
included the interacting domains A and B on the same
polypeptide. Veitia [14] has proposed a kinetic back-
ground to the idea of gene fusion, suggesting the inclu-
sion of eukaryotic sequences to increase the robustness
of Rosetta Stone predictions. The argument basically
involves the fact that eukaryotes, with a larger volume,
cannot afford to accommodate separate proteins A and
B, as the required concentrations of A and B would be
prohibitively high, to achieve the same equilibrium con-
centration of AB. One limitation of this method is its
low coverage; it has the least coverage among the meth-
ods based on genomic context [15].
Conserved neighbourhood
If the genes that encode two proteins are neighbours on
the chromosome in several genomes, the corresponding
proteins are likely to be functionally linked [16]. This
method is particularly useful in case of prokaryotes,
where operons commonly exist, or in organisms where
operon-like clusters are observed. Fig. 1B shows an
example to illustrate this method. This method has been
reported to identify high-quality functional relationships
[17]. However, the method suffers from low coverage,
due to the dual requirement of identifying orthologues
in another genome and then finding those orthologues
that are adjacent on the chromosome [17]. Nevertheless,
this coverage is still higher than that of the Rosetta
Stone method [15]. Bork and co-workers have proposed
another approach that exploits the conservation of
divergently (bi-directionally) transcribed gene pairs [18].
The method is complementary to the existing gene
neighbourhood method, which focuses on operons,
where the genes are transcribed in a common orienta-
tion (co-directionally). They report the application of
this method, to successfully associate self-regulatory
transcription factors to their respective operons, enhan-
cing functional annotations [18].
Phylogenetic profiles
Identification of functional linkages between proteins
using phylogenetic profiles is based on the idea that

functionally linked proteins would co-occur in genomes.
The phylogenetic profile of a protein can be represented
as a ‘bit string’, encoding the presence or absence of the
protein in each of the genomes considered (see Fig. 1C).
Proteins having matching or similar phylogenetic pro-
files tend to be strongly functionally linked [19]. In a
study reported in 1999 [19], when only 17 fully
sequenced genomes were considered for analysis, the
function of a number of proteins in Escherichia coli
could be assigned correctly, by examining the similarity
of their phylogenetic profiles. Fig. 1C illustrates an
example, showing how two proteins A and B are likely
to be functionally linked, owing to the similarity of their
phylogenetic profiles across five genomes. This method
is in a sense the computational equivalent of the experi-
mental genetic approach of mapping a mutant gene’s
phenotype to the gene. Genes with similar phylogenetic
profiles essentially produce similar phenotypes, much
similar to a standard genetic mapping [17]. Bork and
co-workers [20] have used anti-correlated occurrences
of genes (complementary phylogenetic patterns, as
against co-occurrence) across genomes to identify sev-
eral analogous enzyme displacements (functionally
equivalent genes) in thiamine biosynthesis.
The online service Protein Link EXplorer (PLEX; http://

bioinformatics.icmb.utexas.edu/plex/) [21] allows for the
construction of phylogenetic profiles for any given
sequence, which can be compared to profiles of all other
proteins from 89 fully sequenced genomes that are stored
in the PLEX database. PLEX can also accept sophisticated
phylogenetic profile inputs and comparison parameters,
including individual organism or group-based profiles.
Gene neighbours and Rosetta stone links of all proteins
that match the query profile can also be investigated.

Methods based on co-evolution
Co-evolution can be defined as the joint evolution of
ecologically interacting species [22] and it implies the
evolution of a species in response to selection imposed
by another. Co-evolution thus requires the existence of
mutual selective pressure on two or more species [23].
Computational methods to predict PPIs through the
characteristics of co-evolution have been developed by
extrapolating concepts developed for the study of spe-
cies co-evolution to the molecular level [23,24]. An in
silico Two-hybrid (i2h) method has been proposed,
based on the study of correlated mutations in multiple
sequence alignments [25,26]. The premise is that co-
adaptation of interacting proteins can be detected by the
presence of a distinctive number of compensatory muta-
tions in corresponding proteins of different species. An
interaction index, defined based on the distribution of
correlation values is calculated. Correlated mutations
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can also been used to identify specific residues involved
at the interaction sites [26]. Fig. 1D illustrates how cor-
related mutations can be used to identify functional lin-
kages between proteins.
Protein interactions have also been predicted on the

basis of the comparison of evolutionary histories, or
phylogenetic trees, under the premise that interacting
proteins are subject to similar evolutionary pressures
resulting in similar topologies for the corresponding
trees [27-29]. A more recent method [30] uses the com-
plete network of phylogenetic tree similarities between
all protein pairs in the genome to reassess pairwise simi-
larity between the phylogenetic trees of any two pro-
teins, thereby accounting for the co-evolutionary
context of the proteins more effectively.

Other methods
Although homology-based methods are often quite use-
ful for inferring PPIs, there are occasions where homol-
ogy-based methods may not be effective. For example,
Mika and Rost have illustrated earlier that homology-
based inference of physical PPIs are accurate only at

high levels of sequence identity [31]. Further, homology-
based inference of PPIs work better within species than
across species, for low and high levels of sequence simi-
larity [31].
Functional linkages may also be derived by the analy-

sis of correlated mRNA expression levels, or protein
co-expression. These techniques do not require any
homology information [17], as they rely on the mea-
surement of additional expression data. These techni-
ques can, therefore, find unique relationships among
proteins. The premise of all expression clustering
methods is that proteins do not work in isolation and
are often co-expressed with functionally related pro-
teins. By altering the conditions for performing the
experiments, enough variation in gene expression can
be observed to identify co-expressing genes. Protein
co-expression analysis is preferable since mRNA levels
and protein levels have often been found to be poorly
correlated.
Gene expression data has also been shown to be use-

ful in understanding the dynamics of PPI networks
[32-34]. Lu and collaborators [33] integrated gene

Figure 1 Prediction of functional linkages between proteins, based on different methods. (A) Method of domain fusion. The figure
shows proteins predicted to interact by the Rosetta stone method (domain fusion). Each protein is shown schematically with boxes representing
domains. Proteins P2 and P3 in Genomes 2 and 3 are predicted to interact because their homologues are fused in the first genome. (B) Gene
neighbourhood. The figure shows four hypothetical genomes, containing one or more of the genes A, B and C. Since the genes A and B are
co-localised in multiple genomes (1–4), they are likely to be functionally linked with one another. (C) Phylogenetic profiles. The figure shows
five hypothetical genomes, each containing one or more of the proteins A, B, C and D. The presence or absence of each protein is indicated by
1 or 0, respectively, in the phylogenetic profiles given on the right. Identical profiles are highlighted — proteins A and B are functionally linked
(dotted line), whereas proteins C and D, which have different phylogenetic profiles (shown in grey) are not likely to be functionally linked. (D)
Correlated mutations. The alignments of two protein families are shown; conserved residues in either alignment are shown in the same colour
(blue and green). Correlated mutations in either alignment (coloured red) are indicated by arrow marks. Common sub-trees of the phylogenetic
trees are highlighted in yellow. The presence of correlated mutations in each family suggests that the corresponding sites may be involved in
mediating interactions between the proteins from each family.
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expression profiles (from a mice model of asthma) into
a network of mouse PPIs derived from the BIND data-
base. They found that highly connected proteins, or hub
proteins in the network have less variable gene expres-
sion profiles compared to proteins at the network per-
iphery. Mande and collaborators have described the
construction of ‘conditional networks’ by integrating
gene expression data under different conditions into
protein functional linkage networks [34]. These net-
works present a picture of the dynamics of the func-
tional linkages between proteins; a comparative analysis
of four different conditional networks illustrates impor-
tant responses in wild-type and mutant Escherichia coli
cells treated with ultra-violet rays.
Efforts to mine experimental protein–protein associa-

tion information from literature have also been made.
For example, Hogue and co-workers have described an
support vector machine (SVM)-based approach to mine
the biomedical literature for PPIs [35]. Databases such
as the STRING include such computationally mined
interactions [36]. Eisenberg and co-workers have
described an approach to identify abstracts that discuss
PPIs from literature, which may then be manually
scanned to identify PPIs [37]. This approach forms the
basis for the rapid expansion of the database of interact-
ing proteins (DIP) [37]. Zaki and collaborators have
described a method based on pairwise similarity of pro-
tein sub-sequences, to predict PPIs [38].

Experimental methods
Although this review primarily deals with computational
methods for predicting PPIs, I here briefly outline some
experimental methods for assessing PPIs, for the sake of
completeness. There are a number of experimental tech-
niques such as yeast-two hybrid [39], affinity purifica-
tion/mass spectrometry [4,5,9,11,40] and protein
microarrays [41-43], which are reviewed in detail else-
where [44,45]. These form the basis of several large-
scale datasets on PPIs.
In the yeast-two hybrid assay, two fusion proteins are

created: the ‘bait’ (a protein of interest with a DNA-
binding domain attached to its N-terminus) and the
‘prey’ (its potential interaction partner, fused to an acti-
vation domain). If the ‘bait’ and the ‘prey’ interact, their
binding forms a functional transcriptional activator,
which in turn activates reporter genes or selectable mar-
kers [39]. This assay has been adapted for high-through-
put analyses of PPIs [46,47].
Gavin and collaborators have described the purifica-

tion of complexes of 1739 proteins from S. cerevisiae
(including the complete set of 1143 human orthologues)
using tandem affinity purification coupled to mass spec-
trometry, illustrating the complexity of connectivity
between protein complexes [4]. Mass spectrometry has

also been used to construct a large-scale map of human
protein interactions [11].
Protein microarrays aid in the detection of in vitro

binary interactions of various types — protein–protein,
protein–lipid or antigen–antibody interactions. Proteins
covalently attached to a solid support are screened with
fluorescently labelled probes (proteins or lipids), to iden-
tify interactions [41]. A high density yeast protein
microarray comprising 5800 yeast proteins was devel-
oped and used to identify novel calmodulin and phos-
pholipid binding proteins [41].
Although many of these assays can identify PPIs with

high confidence, they still have their share of false posi-
tives and can suffer from a limited reproducibility.
Nevertheless, high-throughput experimental analyses of
PPIs are quite important in obtaining the protein inter-
action map of a cell. Further, combining results from
multiple experiments as well as computational methods
for predicting functional linkages (as is done in data-
bases such as the STRING) is likely to further improve
our understanding of the complex web of interactions
within a cell.

Databases and tools for analysis of PPIs
In this section, I review some of the important databases
that house data on PPIs, as well as some useful tools for
the visualisation and analysis of PPIs. Protein interaction
databases have also been reviewed in [44]. Some of the
important databases containing data about PPIs are dis-
cussed below. Some more examples of databases useful
for researching PPIs are given in Table 1.

STRING
STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins; http://string.embl.de/) [36,48] is a pre-
computed database for the exploration and analysis of
protein–protein associations. The associations are
derived from high-throughput experimental data, mining
of databases and literature, analyses of co-expressed
genes and also from computational predictions, includ-
ing those based on genomic context analysis. STRING
employs a unique scoring framework based on bench-
marks of the different types of associations against a
common reference set, to produce a single confidence
score per prediction. The graphical user interface is
appealing and user-friendly, backed by an excellent
visualisation engine. Medusa http://coot.embl.de/
medusa/, a general graph visualisation tool, is a front
end (interface) to the STRING protein interaction data-
base [49].

HPRD
Human Protein Reference Database (HPRD; http://www.
hprd.org/) [50] integrates information relevant to the
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function of human proteins in health and disease. The
database is almost completely manually curated by biol-
ogists who have read and interpreted over 300,000 pub-
lished articles during the annotation process. Data
pertaining to thousands of PPIs, post-translational modi-
fications, enzyme/substrate relationships, disease asso-
ciations, tissue expression and sub-cellular localisation
have been extracted from literature into the database.

DIP
The DIP (Database of Interacting Proteins; http://dip.
doe-mbi.ucla.edu/) database [51] catalogues experimen-
tally derived PPIs. Due to the variety of experiments and
their corresponding reliabilities, DIP applies some qual-
ity assessment methods to pick out subsets of most reli-
able interactions. The DIP is generally considered as a
valuable benchmark or verify the performance of any
new method for prediction of PPIs.

Predictome
The Predictome [52] database houses links between the
proteins of 44 genomes based on the implementation of
gene context functional linkage methods, viz. chromoso-
mal proximity, phylogenetic profiling and domain
fusion. It also contains information on large-scale
experimental screenings of PPI data, from experiments
such as yeast two-hybrid, immuno-co-precipitation and
correlated expression. The Predictome database is pre-
sently accessible through the visual front-end provided
by VisANT [53], which is a versatile tool for visualisa-
tion and analysis of interaction data. Website http://
visant.bu.edu/.

Tools for network analysis and visualisation
In this section, I briefly discuss some of the useful soft-
ware tools available for the analysis and visualisation of
biological networks. A comprehensive review of the
tools useful for the visualisation of networks has been
published elsewhere [54]. Some more examples of tools
useful for network visualisation and analysis are given in
Table 2.
Cytoscape Cytoscape http://www.cytoscape.org/[55] is a
software platform for visualising molecular interaction
networks and integrating these interactions with gene
expression profiles. The tool is best used in conjunction
with large databases of gene expression data, protein–
protein, protein–DNA, and genetic interactions that are
increasingly available for humans and model organisms.
Cytoscape supports several algorithms for the layout of
networks. Several useful plug-ins are available for Cytos-
cape, to extend its capabilities. A notable example is the
NetworkAnalyzer plug-in [56], which can be used to
compute various network parameters.
Pajek Pajek http://pajek.imfm.si/ is a program (only for
Windows-based operating systems) for the analysis and
visualisation of very large networks; it can even handle
networks with > 105 nodes. Pajek also includes a variety
of network layout algorithms, including force-directed
layout algorithms such as Fruchterman–Reingold [57].
Pajek is highly versatile and can also be used to study
network dynamics.

Analyses of network structure
The field of network theory has witnessed a number of
advances in the past [58-60], many of which are

Table 1 Databases and resources useful for researching PPIs.

Database URL Resources Refs.

BIND Peer-reviewed bio-molecular interaction database containing published interactions
and complexes

http://bind.ca/ [79]

BioGRID Protein and genetic interactions from major model organism species http://www.thebiogrid.org/ [80]

COGs Orthology data and phylogenetic profiles http://www.ncbi.nlm.nih.gov/COG/ [81,82]

DIP Experimentally determined interactions between proteins http://dip.doe-mbi.ucla.edu/ [51]

HPRD Human protein functions, PPIs, post-translational modifications, enzyme–substrate
relationships and disease associations

http://www.hprd.org/ [50,83]

IntAct Interaction data abstracted from literature or from direct data depositions by expert
curators

http://www.ebi.ac.uk/intact/ [84]

iPFAM Physical interactions between those Pfam domains that have a representative
structure in the Protein DataBank (PDB)

http://ipfam.sanger.ac.uk/ [85]

MINT Experimentally verified PPI mined from the scientific literature by expert curators http://mint.bio.uniroma2.it/mint/ [86]

Predictome Experimentally derived and computationally predicted functional linkages http://visant.bu.edu/ [52]

ProLinks Protein functional linkages http://mysql5.mbi.ucla.edu/cgi-bin/
functionator/pronav

[87]

SCOPPI Domain–domain interactions and their interfaces derived from PDB structure files and
SCOP domain definitions

http://www.scoppi.org/ [88]

STRING Protein functional linkages from experimental data and computational predicttions http://string.embl.de/ [36,48]
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impacting the analyses of biological networks such as
PPI networks. In this section, I discuss some of the
important network parameters useful in the analysis of
networks and understanding their characteristics,
important network topologies, as well as some of
the measures that can be used to analyse perturbations
to networks. Detailed reviews of the application
of network theory to biology have been published
elsewhere [61,62].

Network parameters
Network theory provides a quantifiable description of
networks; there are several network measures that
enable the comparison and characterisation of complex
networks:
Connectivity (or) Degree
The most elementary characteristic of a node is its
degree, k, which represents the number of links the
node has, to other nodes in the network.
Degree distribution
The degree distribution, P(k), gives the probability that a
selected node has exactly k links. P(k) is obtained by
counting the number of nodes N(k) with k = 1, 2, ...
links and dividing by the number of nodes N. The
degree distribution allows to distinguish between various
network topologies [61].
Clustering Coefficient
The clustering coefficient was first defined by Watts
and Strogatz [58]. The clustering coefficient, C, for a
node is a notion of how connected the neighbours of a
given node are (cliquishness). The average clustering
coefficient for all nodes in a network is taken to be the
network clustering coefficient. In an undirected graph,
if a vertex vi has ki neighbours, ki(ki - 1)/2 edges could
exist among the vertices within the neighbourhood
(Ni). The clustering coefficient for an undirected graph
G(V, E) (where V represents the set of vertices in the
graph G and E represents the set of edges) can then be
defined as

C
e jk

ki ki
v v N ei j k i jk


 

2

1

|{ }|

( )
; , , .E (1)

The average clustering coefficient characterises the
overall tendency of nodes to form clusters or groups. C
(k) is defined as the average clustering coefficient for all
nodes with k links.
Characteristic Path Length
The characteristic path length, L, is defined as the num-
ber of edges in the shortest path between two vertices,
averaged over all pairs of vertices. It measures the typi-
cal separation between two vertices in the network [58].
Intuitively, it represents the network’s overall navigabil-
ity [61].
Network Diameter
The network diameter d is the greatest distance (short-
est path, or geodesic path) between any two nodes in a
network [63]. It can also be viewed as the length of the
‘longest’ shortest path in the network.

d d u v
u v
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where dG(u, v) is the shortest path between u and v in
G. A few authors have also used this term to denote the
average geodesic distance in a network (which translates
to the characteristic path length), although strictly the
two measures are distinct.
Betweenness
Betweenness is a centrality measure of a vertex within a
graph [64]. For a graph G(V, E), with n vertices, the
betweenness CB(v) of a vertex v is defined as

C v st v
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B

s v t

( )
( )

  
 


V
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where sst is the number of shortest paths from s to t,
and sst(v) is the number of shortest paths from s to t
that pass through a vertex v. A similar definition for

Table 2 Examples of tools useful for the visualisation of networks and PPIs.

Tool URL Features Refs.

BioLayout Express
3D

http://www.biolayout.org/ Facilitates microarray data analysis [89]

Cytoscape http://www.cytoscape.org/ Versatile; implements many visualisation algorithms; many plug-ins available [55]

Large Graph
Layout (LGL)

http://sourceforge.net/projects/lgl Especially useful for dynamic visualisation of large graphs (105 nodes, 106 edges);
force-directed layout algorithm

[90]

Osprey http://biodata.mshri.on.ca/osprey/
servlet/Index

Provides network filters, connectivity filters, many layouts and facilitates dataset
superimposing

[91]

Pajek http://vlado.fmf.uni-lj.si/pub/
networks/pajek/

Especially useful for the analysis of very large networks [92]

Visant http://visant.bu.edu/ Especially facilitates analysis of gene ontologies [53]

Yed http://www.yworks.com/products/
yed/

General purpose graph editor -
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‘edge betweenness’ was given by Girvan and Newman
[65]. Nodes with a higher betweenness lie on a larger
number of shortest paths in a network.

Network topologies
The understanding of the topology or the architectural
principles of a biological network can directly give an
insight into various network characteristics. There are
several known topologies of networks, characterised by
their distinctive network parameters. The following are
some network models that are relevant to the under-
standing of biological networks.
Random networks
The Erdös–Rényi model of a random network starts
with N nodes and connects each pair of nodes with a
probability p, which creates a graph with approximately
pN(N - 1)/2 randomly placed links. The node degrees
follow a Poisson distribution indicating that most nodes
have approximately the same number of links. The char-
acteristic path length is proportional to the logarithm of
the network size L ~ log N. C(k) is independent of k
[61].
Small-world networks
Small-world networks are characterised by two proper-
ties: (i) individual nodes have few neighbours, but (ii)
most nodes can be reached from one another through
few steps, often referred to as ‘six degrees of separation’
[66]. Small-world networks have been generated by re-
wiring regular ring-lattice-like networks [58]. A regular
ring-lattice resembles a (circular) string of beads, where
each node (bead) is linked to one node on either side,
and is also additionally connected to the immediate
neighbour of those nodes. Thus, each node is linked to
four nodes nearest to it on the ‘string’. The ring-lattice
is rewired as follows: the original links in the lattice are
replaced by random ones with a probability 0 ≤ j ≤ 1,
introducing varying amounts of disorder, which takes
the network from complete regularity to complete disor-
der (randomness). The re-wiring process allows the
small-world model to interpolate between a regular lat-
tice and a (more or less) random graph. When j = 0,
there is no re-wiring and the regular lattice remains
unchanged. The clustering coefficient for this lattice
tends to 0.75 for large k. The regular lattice, however,
does not show the small-world effect. Mean geodesic
distances between vertices tend to L/4k for large L.
When j = 1, every edge is re-wired to a new random
location and the graph is almost a random graph, with
typical geodesic distances on the order of log L/ log k,
but very low C ≃ 2k/L [67]. As Watts and Strogatz
showed by numerical simulation, however, there exists a
sizeable region in between these two extremes of j, for
which the model generates a network that has both low
path lengths and high clustering. Small-world networks

have a characteristic path length of the same order as
random networks (L ≳ log N), but have a clustering
coefficient much higher than that of random networks
(C ≫ Crandom). The small-world topology has been
observed in networks such as film actor networks,
power grids and the neural network of the nematode
Caenorhabditis elegans [58].
Scale-free Networks
Scale-free networks are characterised by a power-law
degree distribution; the probability that a node has k
links is given by P(k) ~ k-g, where g is the degree expo-
nent [59]. The value of g determines many properties of
the system. For smaller values of g, the role of the
‘hubs’, or highly connected nodes, in the network
becomes more important. For g > 3, hubs are not rele-
vant, while for 2 <g < 3, there is a hierarchy of hubs,
with the most connected hub being in contact with a
small fraction of all nodes. Scale-free networks have a
high degree of robustness against random node failures,
although they are sensitive to the failure of hubs. The
probability that a node is highly connected is statistically
more significant than in a random graph. The properties
of a scale-free network are often determined by a rela-
tively small number of highly connected hubs. The Bara-
bási–Albert scale-free network model [59] involves the
construction of a network through an iterative proce-
dure. Beginning with a network having m0 nodes, in
each subsequent iteration, a single node is added to the
network, with m ≤ m0 links to existing nodes. The prob-
ability with which this node connects to the existing
nodes of the network is directly proportional to the con-
nectivity of the existing nodes (’rich get richer’ phenom-
enon). The probability pi with which the new node
connects to an existing node i, is given as

p
ki

k jj
i 

 G

where ki is the degree of node i and the denominator
represents the sum of the degrees of all nodes in the
network (G). After n iterations, the model leads to a
network with m0 + n nodes and mn edges. The network
generated by this model has a power-law degree distri-
bution characterised by g = 3. Scale-free networks with
2 <g < 3, a range commonly observed in many biological
networks, are ultra-small, with a characteristic path
length L ~ log log N, significantly smaller than that of
random networks (log N) [61].

Analysis of network perturbations
Networks can be perturbed through the removal of nodes
and edges. A typical analysis would be to probe the effect
of disrupting a node and its corresponding edges. Net-
works of different topologies vary in their resilience to
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various types of perturbations. A number of studies have
been carried out to analyse the response of networks to
the deletion of their nodes and edges. A review of how
nodes in a network can be prioritised based on network
analysis has been presented elsewhere [68].
Barabási and co-workers have analysed the response of

scale-free and random networks to various types of
‘attacks’ [69]. In particular, they have analysed the net-
works representing the topologies of the Internet and
the World-Wide Web. The common observation is that
scale-free networks are quite insensitive to random node
removals; they are highly robust in the face of random
node failures and the characteristic path length was
found to be almost unaffected. This is intuitively reason-
able, since most of the vertices in these networks have
low degree and therefore lie on few paths between
others; thus their removal rarely affects communications
substantially. On the other hand, directed attacks target-
ing the highly connected hubs led to a rapid disruption
of the communication through the network. The charac-
teristic path length was found to increase very sharply
with the fraction of hubs removed and typically only a
small fraction of the hubs needed to be ‘knocked out’
before essentially all communication through the net-
work was destroyed [67,69].
Jeong and co-workers have analysed the effect of node

deletions on S. cerevisiae PPI network [70]. They report
that although proteins with five or fewer links consti-
tuted about 93% of the total number of proteins, only
about 21% of them were essential. On the other hand,
only 0.7% of the proteins had more than 15 links, but
single deletion of 62% of these proved lethal. This
implies that highly connected proteins with a central
role in the architecture of the network are three times
more likely to be essential than proteins with only a
small number of links to other proteins.
Another comprehensive analysis of vulnerability of

complex networks to various types of attacks has been
discussed in [71]. In addition to node deletions studied
earlier [69], they have also studied the effects of edge
removals. Further, for each case of attacks on vertices
and edges, four different attacking strategies were
employed: removals by the descending order of the
degree and the betweenness centrality, calculated for
either the initial network or the modified network dur-
ing the iterative removal procedure. They report that
the removals based on the re-calculated degrees and
betweenness centralities are often more harmful than
the attack strategies based on the initial network’s para-
meters, underlining the importance of the changes in
network structure following the removal of important
edges or nodes.
Wingender and co-workers have proposed a measure,

known as pairwise disconnectivity index [72], which

quantifies how crucial a node or an edge (or a group of
nodes/edges) is, for sustaining the communication
between connected pairs of vertices in a directed net-
work. This is one metric that explicitly considers paths
between the various nodes in a network; it is thus quite
useful in analysing how node deletions in a network can
disrupt the flow of information.
We have earlier reported an analysis of the number of

disrupted shortest paths in the network, to identify
nodes that may be critical to a network [73]. Network
analysis has also been used for identifying pathways to
drug resistance [74]. Ge and collaborators have devel-
oped an ‘information flow analysis’, to identify proteins
central for information transmission in interactome net-
works of S. cerevisiae and C. elegans [75]; the proteins
so identified were also likely to be essential for survival.
The method employs confidence scores for PPIs and
also considers multiple paths in a network while evalu-
ating the importance of each protein [75]. The analysis
of node deletions from PPI networks has been used for
the identification of potential drug targets [73,76].

Conclusions
PPI networks provide a simplified overview of the web
of interactions that take place inside a cell. The vast
amounts of sequence data that have been generated
have been leveraged to make better predictions of inter-
actions and functional associations between proteins, as
well as individual protein functions. By integrating
experimental methods for determining PPIs and compu-
tational methods for prediction, a lot of useful data on
PPIs have been generated, including a number of high-
quality databases.
Although the analyses of PPI networks has produced

several useful results, often improving our understand-
ing of the underlying biology, they are not without
flaws. One of the key flaws of the existing methods to
delineate such large-scale protein interaction networks
is the limited reproducibility of such experiments;
further, it is suspected that what is examined is only a
small fraction of the entire proteome [77]. However,
most databases do combine multiple methods for pre-
dicting interactions, as well as results from multiple
high-throughput experiments, mitigating this problem to
a certain extent. Further, these networks often paint a
static picture of the overwhelmingly complex dynamic
interactions that take place in a cell. An improved
model of these interactions must consider both the
dynamics (temporal changes in the interactions) as well
as the strengths of each of the interactions. The global
overview presented by such interaction maps is no
doubt useful, but the finer details of the interactions
may be significantly important for our ability to make
testable predictions about biological systems [78].
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Nevertheless, protein interaction maps have many
practical applications and hold the key to understanding
complex biological systems. With a large amount of
high-throughput data being generated at various levels,
computational analyses of these data, to identify associa-
tions and interactions between various proteins, form a
fundamental step in our quest to understand the organi-
sation of complex biological systems. As Dennis Bray
put it rather eloquently [78], “We have a new continent
to explore and will need maps at every scale to find our
way“.
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